A Stable Variant of the Secant Method for Solving Nonlinear Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stable variant of the secant method for solving nonlinear equations

The usual successive secant method for solving systems of nonlinear equations suffers from two kinds of instabilities. First the formulas used to update the current approximation to the inverse Jacobian are numerically unstable. Second, the directions of search for a solution may collapse into a proper affine subspace, resulting at best in slowed convergence and at worst in complete failure of ...

متن کامل

Newton - Secant method for solving operator equations ∗

where F is a Fréchet-differentiable operator defined on an open subset D of a Banach space X with values in a Banach space Y . Finding roots of Eq.(1) is a classical problem arising in many areas of applied mathematics and engineering. In this study we are concerned with the problem of approximating a locally unique solution α of Eq.(1). Some of the well known methods for this purpose are the f...

متن کامل

A SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS

In this paper, we present a new iterative method with order of convergence eighth for solving nonlinear equations. Periteration this method requires three evaluations of the function and one evaluation of its first derivative. A general error analysis providing the eighth order of convergence is given. Several numerical examples are given to illustrate the efficiency and performance of the new ...

متن کامل

Stable Gaussian radial basis function method for solving Helmholtz equations

‎Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems‎. ‎They are often referred to as a meshfree method and can be spectrally accurate‎. ‎In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion‎. ‎We develop our approach in two-dimensional spaces for so...

متن کامل

The Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model

This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 1976

ISSN: 0036-1429,1095-7170

DOI: 10.1137/0713070